Asymptotic expansions for high-contrast elliptic equations

نویسندگان

  • Victor M. Calo
  • Yalchin Efendiev
  • Juan Galvis
چکیده

In this paper, we present a high-order expansion for elliptic equations in highcontrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [22] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high and low conductivity inclusions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary Regularity for Viscosity Solutions of Fully Nonlinear Elliptic Equations

We provide regularity results at the boundary for continuous viscosity solutions to nonconvex fully nonlinear uniformly elliptic equations and inequalities in Euclidian domains. We show that (i) any solution of two sided inequalities with Pucci extremal operators is C1,α on the boundary; (ii) the solution of the Dirichlet problem for fully nonlinear uniformly elliptic equations is C2,α on the b...

متن کامل

Transient Natural Convection Flow on an Isothermal Vertical Wall at High Prandtl Numbers: Second-Order Approximation

The method of matched asymptotic expansions, which has been used in previous studies of steady natural convection flow, is extended here to transient natural convection flow at high Prandtl number (Pr). Second-order expansion solutions, valid for large Prandtl numbers, are presented for the transient natural convection flow near a vertical surface which undergoes a step change in temperature. T...

متن کامل

Small volume expansions for elliptic equations

This paper analyzes the influence of general, small volume, inclusions on the trace at the domain’s boundary of the solution to elliptic equations of the form ∇ · Dε∇uε = 0 or (−∆ + qε)uε = 0 with prescribed Neumann conditions. The theory is well-known when the constitutive parameters in the elliptic equation assume the values of different and smooth functions in the background and inside the i...

متن کامل

Extrapolation of Numerical Solutions for Elliptic Problems on Corner Domains

We study the extrapolation method for the numerical solution of elliptic boundary value problems on corner domains. Most papers on the extrap-olation method for solving diierential equations require smoothness assumptions on exact solutions, which do not hold for boundary value problems on corner domains. We conjecture that asymptotic error expansions exist as long as there is enough smoothness...

متن کامل

Convergence in L space for the homogenization problems of elliptic and parabolic equations in the plane

We study the convergence rate of an asymptotic expansion for the elliptic and parabolic operators with rapidly oscillating coefficients. First we propose homogenized expansions which are convolution forms of Green function and given force term of elliptic equation. Then, using local Lp-theory, the growth rate of the perturbation of Green function is found. From the representation of elliptic so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012